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Abstract
In this supplementary file, we first present the parameter setting for ρ, and then present the proof of the lemmas
and theorems appeared in the main paper.

1. Parameter Setting for ρ

In the main paper, we present (14) as a simple and effective method to choose ρ, which is motivated by the thresholding
strategy in StOMP for sparse signal recovery (Donoho et al., 2012). Specifically, let σ be the singular vector of A∗(b),
where σi is arranged in descending order, we choose ρ such that

σi ≥ ησ1, ∀i ≤ ρ, (1)

where η ≥ 0.60 is usually a good choice.

However, it is not trivial to predict the number of singular values that satisfy (1) for big matrices if we do not want to
compute a full SVD. Since ρ in general is small, we propose to compute σi sequentially until condition (1) is violated. Let
B ≥ 1 be a small integer. We propose to compute B singular values per iteration. Basically, if σi > ησ1 (where i ≥ 2), we
can compute the singular values σi+1, ..., σi+B by performing a rank B truncated SVD on Ai = A∗(b)−

∑i
j=1 σjujv

T
j

using PROPACK. In practice, we suggest setting B ≥ 2. The schematic of the Sequential Truncated SVD for Setting ρ
is presented in Algorithm 1. Notice that, PROPACK involves only matrix-vector product with Ai and AT

i which can be
calculated as Udiag(σ)VTr by Udiag(σ)(VTr) for the low-rank term in Ai. We remark that instead of Algorithm 1,
a more efficient technique may involve restarting the Krylov-based method, like PROPACK, with an increasingly larger
subspace until (1) is satisfied.

Algorithm 1 Sequential Truncated SVD for Setting ρ.
1: Given η and A∗(b), initialize ρ = 2 and B > 1.
2: Do the rank-2 truncated SVD on A∗(b), obtaining σ ∈ R2, U ∈ Rm×2 and V ∈ Rn×2.
3: If σρ ≥ ησ1, stop and return ρ = 2.
4: while σρ < ησ1 do
5: Let ρ = ρ+B.
6: Do the rank-B truncated SVD on A∗(b)−Udiag(σ)VT, obtaining σB ∈ RB , UB ∈ Rm×B and VB ∈ Rn×B .
7: Let U = [UUB ], V = [V VB ] and σ = [σ σB ].
8: end while
9: Return ρ.
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2. Main Theoretical Results in the Paper
We first repeat the main results in the paper before we prove Lemma 1 and Theorem 1 (the other results were already
proven in the paper).

Proposition 1. In MC, suppose the observed entry set Ξ is sampled according to the Bernoulli model with each entry
(i, j) ∈ Ξ being independently drawn from a probability p. There exists a constant C > 0, for all γr ∈ (0, 1), µB ≥ 1,
n ≥ m ≥ 3, if p ≥ Cµ2

Br
2 log(n)/(γ2

rm), the following RIP condition holds

(1− γr)p||X||2F ≤ ||PΞ(X)||2F ≤ (1 + γr)p||X||2F , (2)

for any µB-incoherent matrix X ∈ Rm×n of rank at most r with probability at least 1− exp(−n log n).

Lemma 1. Let {Xt} be the sequence generated by RP, then

f(Xt) ≤ f(Xt−1)− τt
2
||Ht

2||22. (3)

where τt satisfies condition in (10) of the paper.

Theorem 1. Let {Xt} be the sequence generated by RP and ζ = min{τ1, · · · , τι}. As long as f(Xt) ≥ C
2 ||e||

2 (where
C > 1) and if there exists an integer ι > 0 such that γ(r̂+2ιρ) <

1
2 , then RP decreases linearly in objective values when

t < ι, namely f(Xt+1) ≤ νf(Xt), where

ν = 1− ρζ

2r̂

(
C(1− 2γ(r̂+2ιρ))

2

(
√
C + 1)2(1− γ(r̂+2ιρ))

)(
1− 1√

C

)2

.

Proposition 2 (Sato & Iwai (2013)). Given the retraction (8) and vector transport (20) onMr in the paper, there exists a
step size θk that satisfies the strong Wolfe conditions (17) and (18) of the paper.

Lemma 2. If c2 < 1
2 , then the search direction ζk generated by NRCG with Fletcher-Reeves rule and strong Wolfe step

size control satisfies

− 1

1− c2
≤ 〈gradf(Xk), ζk〉
〈gradf(Xk−1), gradf(Xk−1)〉

≤ 2c2 − 1

1− c2
. (4)

Theorem 2. Let {Xk} be the sequence generated by NRCG with the strong Wolfe line search, where 0 < c1 < c2 < 1/2,
we have limk→∞ inf gradf(Xk) = 0.

3. Proof of Lemma 1 in the Paper
The step size τt is determined such that

f(RX(−τtHt−1)) ≤ f(Xt−1)− τt
2
〈Ht−1,Ht−1〉.

Since 〈Ht−1
1 ,Ht−1

2 〉 = 0, it follows that

f(Xt) ≤ f(Xt−1)− τt
2
||Ht−1

1 ||22 −
τt
2
||Ht−1

2 ||22

≤ f(Xt−1)− τt
2
||Ht−1

2 ||22,

where the equality holds when Ht−1
1 = 0, which happens if we solve the master problem exactly.

4. Proof of Theorem 1 in the Paper
4.1. Key Lemmas

To complete the proof of Theorem 1, we first recall a property of the orthogonal projection PTXMr
(Z).

Lemma 3. Given the orthogonal projection PTXMr (Z) = PUZPV + P⊥U ZPV + PUZP
⊥
V , we have rank(PTXMr (Z)) ≤

2 min(rank(Z), rank(PU )) for any X. In addition, we have ||PTXMr (Z)||F ≤ ||Z||F for any Z ∈ Rm×n.
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Proof. According to (Shalit et al., 2012), the three terms in PTXMr
(Z) are orthogonal to each other. Since rank(PU ) =

rank(PV ), we have

rank(PTXMr
(Z)) = rank(ZPV + PUZP

⊥
V )

≤ min(rank(Z), rank(PV )) + min(rank(Z), rank(PU ))

= 2 min(rank(Z), rank(PU )).

The relation ||PTXMr
(Z)||F ≤ ||Z||F follows immediately form the fact that PTXMr

is an orthogonal projection for the
Frobenius norm.

4.2. Notation

We first introduce some notation.

First, let X̂ and e be the ground-truth low-rank matrix and additive noise, respectively. Moreover, let {Xt} be the sequence
generated by RP, ξt = A(Xt) − b and Gt = A∗(ξt). In RP, we solve the fixed-rank subproblem approximately by the
NRCG method. Recall the definition of the orthogonal projection onto the tangent space of X = USVT

PTXMr
(Z) := PTX

(Z) = PUZPV + P⊥U ZPV + PUZP
⊥
V = PUZ + ZPV − PUZPV ,

where PU = UUT and PV = VVT. In addition, denote the projection P⊥TX
as the complement of PTX

as

P⊥TX
= (I− PU )Z(I− PV ).

Now recalling
Et = PTXtMtρ

(Gt) = PTXtMtρ
(A∗(ξt)),

we have

〈Xt,A∗(ξt)〉 = 〈Xt,Et〉. (5)

At the tth iteration, rank(Xt) = tρ, thus Xt − X̂ is at most of rank (r̂ + tρ) where r̂ = rank(X̂). By the orthogonal
projection PTX

, we decompose X̂ into two mutually orthogonal matrices

X̂ = X̂Ct + X̂Qt , where X̂Ct = PTXt
(X̂) and X̂Qt = P⊥TXt

(X̂). (6)

Based on the above decomposition, it follows that

〈Xt − X̂Ct , X̂Qt〉 = 0.

Without loss of generality, we assume that r̂ ≥ tρ. According to Lemma 3, we have rank(X̂Ct) ≤
2 min(rank(X̂), rank(PU )) = 2tρ and rank(X̂Qt) ≤ r̂. Moreover, since the column and row space of Xt is contained
in X̂Ct = PTXt

(X̂), we have rank(Xt − PTX
(X̂)) ≤ 2tρ.

Note that, at the (t+ 1)th iteration of RP, we increase the rank of Xt by ρ by performing a line search using

Ht = Ht
1 + Ht

2, where Ht
1 = PTXt

(Gt) and Ht
2 = Uρdiag(σρ)V

T
ρ ∈ RanP⊥TXt

.

For convenience in description, we define an internal variable Zt+1 ∈ Rm×n as:

Zt+1 = Xt − τtGt, (7)

where τt is the step size used in (10) in the paper. Based on the decomposition of Ht, we decompose Zt+1 into

Zt+1 = Zt+1
1 + Zt+1

Q + Zt+1
R , (8)
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where

Zt+1
1 = PTXt

(Zt+1) = Xt − τtPTXt
(Gt),

Zt+1
Q = PTX̂Qt

(Zt+1) = −τtPTX̂Qt

(Gt), (9)

Zt+1
R = (I − PTXt

− PTX̂Qt

)(Zt+1).

Observe that from (6), we have X̂T
Qt

Xt = (Xt)TX̂Qt = 0. Hence,

RanPTXt
⊥ RanPTX̂Qt

⊥ Ran(I − PTXt
− PTX̂Qt

), (10)

which implies that the three matrices from above are mutually orthogonal. Similarly, Gt is decomposed into three mutually
orthogonal parts

Gt = Gt
1 + Gt

Q + Gt
R, where Gt

1 = PTXt
(Gt), Gt

Q = PTX̂Qt

(Gt), and Gt
R = (I − PTXt

− PTX̂Qt

)(Gt). (11)

4.3. Proof of Theorem 1

The proof of Theorem 1 involves three bounds for f(Xt) in terms of X̂Qt , Z
t+1
Q and ||Ht

2||F , respectively. For convenience,
we first list these bounds in order to complete the proof of Theorem 1, and we will leave the detailed proof of the three
bounds in Section 4.4.

First, the following Lemma gives the bound of f(Xt) in terms of X̂Qt .
Lemma 4. At the t-th iteration, if γ(r̂+2tρ) < 1/2, then

f(Xt) ≥ 1

2

C(1− 2γ(r̂+2tρ))
2

(
√
C + 1)2(1− γ(r̂+2tρ))

||X̂Qt ||2F .

The following lemma bounds f(Xt) w.r.t. Zt+1
Q .

Lemma 5. Suppose ||Et||F is sufficiently small with Et = PTXt
(Gt). For γ(r̂+2tρ) < 1/2 and C > 1, we have

‖Zt+1
Q ‖

2
F ≥

(
2Cτ2

t (1− 2γ(r̂+2tρ))
2

(
√
C + 1)2(1− γ(r̂+2tρ))

)(
1− 1√

C

)2

f(Xt),

By combining Lemma 4 and 5 from above, we shall show the following bound for f(Xt) w.r.t. Ht
2.

Lemma 6. If γ(r̂+2tρ) <
1
2 , at the t-th iteration, we have

‖Ht
2‖2F >

ρ

r̂

(
C(1− 2γ(r̂+2tρ))

2

(
√
C + 1)2(1− γ(r̂+2tρ))

)
(1− 1√

C
)2f(Xt).

Proof of Theorem 1. By combining Lemma 1 and Lemma 6, we have

f(Xt+1) ≤ f(Xt)− τt
2
‖Ht

2‖2

≤

(
1− ρτt

2r̂

(
C(1− 2γ(r̂+2tρ))

2

(
√
C + 1)2(1− γ(r̂+2tρ))

)(
1− 1√

C

)2
)
f(Xt).

The variable τt is a step size obtained by the line search. There should exist a ζ and ζ = min{τ1, · · · , τι} such that the

above relation holds for each t < ι, where γ(r̂+2ιρ) < 1/2. Note that (1−2γ(r̂+2tρ))
2

(1−γ(r̂+2tρ))
is decreasing w.r.t. γ(r̂+2tρ) in (0, 1/2).

In addition, since γ(r̂+2tρ) ≤ γ(r̂+2ιρ) holds for all t ≤ ι, the following relation holds if γ(r̂+2ιρ) < 1/2 and t < ι,

f(Xt+1) ≤

(
1− ρζ

2r̂

(
C(1− 2γ(r̂+2ιρ))

2

(
√
C + 1)2(1− γ(r̂+2ιρ))

)(
1− 1√

C

)2
)
f(Xt).

This completes the proof of Theorem 1.



Riemannian Pursuit for Big Matrix Recovery

4.4. Detailed Proof of the Three Bounds

4.4.1. KEY LEMMAS

To proceed, we need to recall a property of the constant γr in RIP.
Lemma 7. (Lemma 3.3 in (Candès & Plan, 2010)) For all XP , XQ ∈ Rm×n satisfying 〈XP ,XQ〉 = 0, where
rank(XP ) ≤ rp, rank(XQ) ≤ rq ,

|〈A(XP ),A(XQ)〉| ≤ γrp+rq‖XP ‖F ‖XQ‖F . (12)

In addition, for any two integers r ≤ s, then γr ≤ γs (Dai & Milenkovic, 2009).

Suppose bq = A(XQ), for some XQ with rank(XQ) = rq . Define bp = A(XP ) where XP is the optimal solution of the
following problem

min
X

1

2
||A(X)−A(XQ)||2F , s.t. rank(X) = rp, 〈X,XQ〉 = 0. (13)

Let br = bp − bq = A(XP )−A(XQ), then the following relation holds.
Lemma 8. With bq , bp and br defined above, if γmax(rp,rq) + γrp+rq ≤ 1, then

‖bp‖ ≤
γrp+rq

1− γmax(rp,rq)
‖bq‖, and (14)(

1−
γrp+rq

1− γmax(rp,rq)

)
‖bq‖ ≤ ‖br‖ ≤ ‖bq‖. (15)

Proof. Since 〈XQ,XP 〉 = 0, with Lemma 7, we have

|bT
pbq| = |〈A(XP ),A(XQ)〉|

≤ γrp+rq ||XP ||F ||XQ||F

≤ γrp+rq

||bp||√
1− γrp

||bq||√
1− γrq

≤
γrp+rq

1− γmax(rp,rq)
||bp|| ||bq||.

Now we show that bT
pbr = 0. Let XP = Udiag(σ)VT. Since XP is the minimizer of (13), σ is also the minimizer to the

following problem:

min
σ
‖bq −Dσ‖22, (16)

where D = [A(u1v
T
1 ), ...,A(urpv

T
rp)]. The Galerkin condition for this linear least-square system states that bT(Dσ −

bq) = 0 for any b in the column span of D. Since bp = A(XP ) is included in the span of D, we obtain bT
pbr = 0.

Recall now br = bp − bq . Then it follows that |bT
pbq| = |bT

p (bp − br)| = ||bp||2. Accordingly, we have

||bp|| ≤
γrp+rq

1− γmax(rp,rq)
||bq||.

Using the reverse triangular inequality, ||br|| = ||bq − bp|| ≥ | ||bq|| − ||bp|| |, we obtain

||br|| ≥
(

1−
γrp+rq

1− γmax(rp,rq)

)
||bq||.

By the Galerkin condition of (16), we have ||bq||2 = ||br||2 + ||bp||2, we obtain(
1−

γrp+rq

1− γmax(rp,rq)

)
||bq|| ≤ ||br|| ≤ ||bq||.

Finally, the condition γmax(rp,rq) +γrp+rq ≤ 1 is for the positiveness of (1− γrp+rq
1−γmax(rp,rq)

). This completes the proof.
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4.4.2. PROOF OF LEMMA 4

Recall (6). Since b = A(X̂) + e, we have

√
f(Xt) =

√
1

2
‖A(Xt)− b‖2

=
1√
2
‖A(Xt − X̂)− e‖

≥ 1√
2

(
‖A(Xt − X̂)‖ − ‖e‖

)
=

1√
2

(
‖A(Xt − X̂Ct)−A(X̂Qt)‖ − ||e||

)
Note that 〈Xt − X̂Ct , X̂Qt〉 = 0, and rank(Xt − X̂Ct) ≤ 2tρ. By applying Lemma 8, where we let bq = A(X̂Qt) and
br = A(X̂Qt)−A(XP ) with XP specified below, it follows that

√
f(Xt) ≥ 1√

2

(
min

rank(X)=2tρ,〈X,X̂Qt 〉=0
‖A(X)−A(X̂Qt)‖ − ‖e‖

)

≥ 1√
2

((
1−

γr̂+2tρ

1− γmax(2tρ,r̂)

)
‖A(X̂Qt)‖ − ‖e‖

)
(by Lemma 8)

≥ 1√
2

((
1−

γr̂+2tρ

1− γmax(2tρ,r̂)

)√
1− γr̂||X̂Qt ||F − ||e||

)
(by RIP condition)

≥ 1√
2

((
1−

γr̂+2tρ

1− γr̂+2tρ

)√
1− γr̂+2tρ||X̂Qt ||F − ||e||

)
(by γ(r̂+2tρ) ≥ γmax(2tρ,r̂) ≥ γr̂)

≥ 1√
2

(
1− 2γ(r̂+2tρ)√
(1− γ(r̂+2tρ))

||X̂Qt ||F − ||e||

)
.

Recall that f(Xt) ≥ Cf(X̂) ≥ C
2 ||e||

2. By rearranging the above inequality, we have

f(Xt) ≥ 1

2

C(1− 2γ(r̂+2tρ))
2

(
√
C + 1)2(1− γ(r̂+2tρ))

||X̂Qt ||2F . (17)

This completes the proof.

4.4.3. PROOF OF LEMMA 5

First, we have the following bound of f(Xt) in terms of 〈X̂Qt ,Z
t+1
Q 〉 if ‖Et‖F is sufficiently small.

Lemma 9. Suppose that Xt is an approximate solution with Et = PTXt
(Gt). For γ(r̂+2tρ) < 1/2 and ‖Et‖F sufficiently

small, the following inequality holds at the t-th iteration:

1

2τt
〈X̂Qt ,Z

t+1
Q 〉 ≥

1

2
(1− 1

C
)f(Xt). (18)

Proof. Recall the decomposition (11) and let ξt = A(Xt)− b. Then it follows that

−1

2
A(X̂)Tξt = −1

2
〈X̂,A∗(ξt)〉

= −1

2

〈[
X̂Ct X̂Qt

]
,

[
Gt

1

Gt
Q

]〉
(by (10))

= −1

2
〈X̂Ct ,Et〉 −

1

2
〈X̂Qt ,G

t
Q〉 (by (11))

= −1

2
〈X̂Ct ,Et〉+

1

2τt
〈X̂Qt ,Z

t+1
Q 〉. (by (9)) (19)
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Therefore, we have

f(Xt) =
1

2
‖A(Xt)− b‖2

=
1

2
A(Xt)Tξt − 1

2
bTξt

=
1

2
〈Xt,A∗(ξt)〉 − 1

2
bTξt

=
1

2
〈Et,Xt〉 − 1

2
(A(X̂) + e)Tξt (by (5))

=
1

2
〈Et,Xt〉 − 1

2
A(X̂)Tξt − 1

2
eTξt

=
1

2
〈Et,Xt〉+

1

2τt
〈X̂Qt ,Z

t+1
Q 〉 −

1

2
〈X̂Ct ,Et〉 −

1

2
eTξt. (by (19))

Based on the assumption f(Xt) ≥ Cf(X̂) = C
2 ||e||

2, where C > 1, we then have

1

2

∣∣eTξt∣∣ ≤ 1

2
‖e‖ × ‖ξt‖ ≤ 1

2

√
2

C
f(Xt)

√
2f(Xt) =

1√
C
f(Xt).

It follows that

1

2τt
〈X̂Qt ,Z

t+1
Q 〉 = f(Xt) +

1

2
eTξ − 1

2
〈Et,Xt〉+

1

2
〈X̂Ct ,Et〉

≥ (1− 1√
C

)f(Xt)− 1

2
〈Et,Xt〉+

1

2
〈X̂Ct ,Et〉. (20)

Suppose |〈Et, X̂Ct −Xt〉| ≤ ϑf(Xt) for ϑ > 0, then it follows that

1

2τt
〈X̂Qt ,Z

t+1
Q 〉 ≥ (1− 1√

C
)f(Xt)− ϑf(Xt)

≥ (1− 1√
C
− ϑ)f(Xt). (21)

Suppose ϑ� 1√
C

, we can simplify the formulation by absorbing ϑ into C as

1

2τt
〈X̂Qt ,Z

t+1
Q 〉 ≥

(
1− 1√

Ĉ

)
f(Xt). (22)

Let C := Ĉ, where C > 1, and we complete the proof.

Proof of Lemma 5. Based on Lemma 9, we have

1

2τt
‖X̂Qt‖F ‖Zt+1

Q ‖F ≥
1

2τt
〈X̂Qt ,Z

t+1
Q 〉 ≥ (1− 1√

C
)f(Xt).

Furthermore, with Lemma 4, it follows that

‖Zt+1
Q ‖

2
F ≥ 4τ2

t

‖X̂Qt‖2F

(
1− 1√

C

)2

f(Xt)2

≥

(
2Cτ2

t (1− 2γ(r̂+2tρ))
2

(
√
C + 1)2(1− γ(r̂+2tρ))

)(
1− 1√

C

)2

f(Xt). (23)

The proof is completed.
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4.4.4. PROOF OF LEMMA 6

Recall that Ht
2 is obtained by the truncated SVD of rank ρ on Ĝt = P⊥TXt

(Gt), and rq = rank(Zt+1
Q ) ≤ 2r̂, where

Zt+1
Q = −τtGt

Q = −τtPTX̂Qt

(Ĝ). Let HQ be the truncated SVD of rank ρ on Gt
Q = PTX̂Qt

(Gt). Since RanPTX̂Qt

⊆
RanP⊥TXt

, we have
||HQ||2F ≤ ||Ht

2||2F .

Accordingly, if ρ ≤ rq , we have ||H
t
2||

2
F

ρ ≥ ||HQ||2F
ρ ≥ ||Z

t+1
Q ||2F
τ2
t rq

. It follows from Lemma 5 that

||Ht
2||2F ≥

2ρ

rq

(
C(1− 2γ(r̂+2tρ))

2

(
√
C + 1)2(1− γ(r̂+2tρ))

)(
1− 1√

C

)2

f(Xt).

Otherwise, if ρ > rq , we have ‖Ht
2‖F ≥

‖Zt+1
Q ‖F
τt

, and the following inequality holds

||Ht
2||2F ≥

(
2C(1− 2γ(r̂+2tρ))

2

(
√
C + 1)2(1− γ(r̂+2tρ))

)(
1− 1√

C

)2

f(Xt).

In summary, since rq ≤ 2r̂, we have ||Ht
2||2 ≥

ρ
r̂

(
C(1−2γ(r̂+2tρ))

2

(
√
C+1)2(1−γ(r̂+2tρ))

)(
1− 1√

C

)2

f(Xt). The proof is completed.
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